Received 25 February 2003 Accepted 3 March 2003

Online 14 March 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sven Breitung,^a Hans-Wolfram Lerner^a and Michael Bolte^b*

^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.049 wR factor = 0.141 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Both ions of the title compound, $C_9H_{18}NO^+ \cdot CF_3CO_2^-$, are located on a crystallographic mirror plane. The piperidone ring adopts an almost ideal chair conformation. The different ions form hydrogen-bonded chains, extending parallel to the crystallographic *a* axis.

Comment

Piperidine derivates have found widespread use as bulky bases in organic chemistry. We report here the reaction of 2,2,6,6tetramethyl-4-piperidone with trifluoroacetic acid and the X-ray crystal structure analysis of 2,2,6,6-tetramethyl-4oxopiperidinium trifluoroacetate, (I). The synthesis of (I) was achieved as indicated in the *Scheme* below.

Both ions of (I) are located on a crystallographic mirror plane. Only the methyl groups and the sp^3 C atoms of the piperidone ring and one of the F atoms are located in general positions. Bond lengths and angles are in the usual ranges. The piperidone ring adopts an almost ideal chair conformation, with Q = 0.525 (2) Å, $\theta = 176.2$ (3)°, $\varphi = 360$ (3)° (Cremer & Pople, 1975). The anions and cations form infinite hydrogenbonded chains along the crystallographic *a* axis.

Experimental

The title compound was produced from 2 mmol 2,2,6,6-tetramethyl-4piperidone in 5 ml CHCl₃, in the presence of 3 mmol trifluoroacetic acid at ambient temperature. Colourless crystals of (I) were grown by storing this solution at room temperature for 2 d. ¹H NMR (CDCl₃, internal TMS): δ 1.26 (*s*, 4 × CH₃), 2.34 (*s*, 2 × CH₂), 5.67 (*s*, *br*, NH₂). ¹³C{¹H} NMR (CDCl₃, internal TMS): δ 30.8 (*s*, CH₃), 52.7 (*s*, 2 CH₂), 56.8 (*s*, 2 × NCMe), 116.5 (*q*, CF₃, ¹J_{FC} = 292.8 Hz), 161.7 (*q*, CO₂, ²J_{FC} = 35.1 Hz).

Crystal data

$C_9H_{18}NO^+ \cdot C_2F_3O_2^-$	$D_x = 1.332 \text{ Mg m}^{-3}$
$M_r = 269.26$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/m$	Cell parameters from 3675
a = 6.6117 (14) Å	reflections
b = 9.1388 (15) Å	$\theta = 3.7 - 25.1^{\circ}$
c = 11.3024 (19) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 100.450 \ (17)^{\circ}$	T = 173 (2) K
$V = 671.6 (2) \text{ Å}^3$	Block, colourless
Z = 2	$0.29 \times 0.18 \times 0.11 \text{ mm}$

Figure 1

Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. Symmetry operator for generating equivalent atoms: (i) x, $-y + \frac{3}{2}$, z.

Data collection

Stoe IPDS-II two-circle	1215 independent reflections
diffractometer	906 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.041$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.2^{\circ}$
(MULABS; Spek, 1990; Blessing,	$h = -7 \rightarrow 7$
1995)	$k = -10 \rightarrow 10$
$T_{\min} = 0.966, \ T_{\max} = 0.984$	$l = -12 \rightarrow 13$
3390 measured reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0836P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 0.1272P]
$wR(F^2) = 0.141$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1215 reflections	$\Delta \rho_{\rm max} = 0.55 \text{ e} \text{ Å}^{-3}$
100 parameters	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1A \cdots O11 \\ N1 - H1B \cdots O12^{i} \end{array}$	0.89 (4)	1.91 (4)	2.787 (3)	168 (3)
	0.91 (4)	1.94 (4)	2.840 (3)	168 (3)

Symmetry code: (i) x - 1, y, z.

Packing of the title compound. View perpendicular to the *ac* plane. Only the H atoms bonded to N are shown. Atom codes: C shaded black circles, H small open green circles, F dotted green circles, N blue shaded circles, O cross-hatched red circles.

H atoms bonded to C atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5 U_{eq}(C_{methyl})]$ using a riding model, with C-H = 0.99 Å or methyl C-H = 0.98 Å. H atoms bonded to N atoms were refined isotropically.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.