Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Sven Breitung, ${ }^{\text {a }}$ Hans-Wolfram Lerner ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b* }}$

${ }^{\text {a }}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\text {b }}$ Institut für Organische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.049$
$w R$ factor $=0.141$
Data-to-parameter ratio $=12.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,2,6,6-Tetramethyl-4-oxopiperidinium trifluoroacetate

Both ions of the title compound, $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}^{+} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$, are located on a crystallographic mirror plane. The piperidone ring adopts an almost ideal chair conformation. The different ions form hydrogen-bonded chains, extending parallel to the crystallographic a axis.

Comment

Piperidine derivates have found widespread use as bulky bases in organic chemistry. We report here the reaction of $2,2,6,6-$ tetramethyl-4-piperidone with trifluoroacetic acid and the X-ray crystal structure analysis of 2,2,6,6-tetramethyl-4oxopiperidinium trifluoroacetate, (I). The synthesis of (I) was achieved as indicated in the Scheme below.

Both ions of (I) are located on a crystallographic mirror plane. Only the methyl groups and the $s p^{3} \mathrm{C}$ atoms of the piperidone ring and one of the F atoms are located in general positions. Bond lengths and angles are in the usual ranges. The piperidone ring adopts an almost ideal chair conformation, with $Q=0.525$ (2) $\AA, \theta=176.2(3)^{\circ}, \varphi=360(3)^{\circ}$ (Cremer \& Pople, 1975). The anions and cations form infinite hydrogenbonded chains along the crystallographic a axis.

Experimental

The title compound was produced from $2 \mathrm{mmol} 2,2,6,6$-tetramethyl-4piperidone in $5 \mathrm{ml} \mathrm{CHCl}_{3}$, in the presence of 3 mmol trifluoroacetic acid at ambient temperature. Colourless crystals of (I) were grown by storing this solution at room temperature for $2 \mathrm{~d} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, internal TMS): $\delta 1.26\left(s, 4 \times \mathrm{CH}_{3}\right), 2.34\left(s, 2 \times \mathrm{CH}_{2}\right), 5.67\left(s, b r, \mathrm{NH}_{2}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}, internal TMS): $\delta 30.8\left(s, \mathrm{CH}_{3}\right), 52.7\left(s, 2 \mathrm{CH}_{2}\right)$, $56.8(s, 2 \times \mathrm{NCMe}), 116.5\left(q, \mathrm{CF}_{3},{ }^{1} J_{\mathrm{FC}}=292.8 \mathrm{~Hz}\right), 161.7\left(q, \mathrm{CO}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{FC}}=35.1 \mathrm{~Hz}\right)$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}^{+} \cdot \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}^{-} \\
& M_{r}=269.26 \\
& \text { Monoclinic, } P_{2} / m \\
& a=6.6117(14) \AA \\
& b=9.1388(15) \AA \AA^{\circ} \AA \\
& c=11.3024(19) \AA \\
& \beta=100.450(17)^{\circ} \\
& V=671.6(2) \AA^{3} \\
& Z=2
\end{aligned}
$$

Received 25 February 2003
Accepted 3 March 2003
Online 14 March 2003

Figure 1
Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. Symmetry operator for generating equivalent atoms: (i) $x,-y+\frac{3}{2}, z$.

Data collection

Stoe IPDS-II two-circle	1215 independent reflections
\quad diffractometer	906 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.041$
Absorption correction: multi-scan	$\theta_{\max }=25.2^{\circ}$
$\quad($ MULABS; Spek, 1990; Blessing,	$h=-7 \rightarrow 7$
1995)	$k=-10 \rightarrow 10$
$T_{\min }=0.966, T_{\max }=0.984$	$l=-12 \rightarrow 13$
3390 masur	

3390 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.141$
$w R\left(F^{2}\right)=0.141$
$S=1.05$
1215 reflections

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0836 P)^{2}\right. \\
& \quad+0.1272 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.55 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

100 parameters

Figure 2

Packing of the title compound. View perpendicular to the ac plane. Only the H atoms bonded to N are shown. Atom codes: C shaded black circles, H small open green circles, F dotted green circles, N blue shaded circles, O cross-hatched red circles.

H atoms bonded to C atoms were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ or $\left.1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right]$ using a riding model, with $\mathrm{C}-\mathrm{H}=0.99 \AA$ or methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$. H atoms bonded to N atoms were refined isotropically.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical
X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

